54 research outputs found

    Connective Tissues Simulation on GPU

    Get PDF
    International audienceRecent work in the field of medical simulation have led to real advances in the mechanical simulation of organs. However, it is important to notice that, despite the major role they may have in the interaction between organs, the connective tissues are often left out of these simulations. In this paper, we propose a model which can rely on either a mesh based or a meshless methods. To provide a realistic simulation of these tissues, our work is based on the weak form of continuum mechanics equations for hyperelastic soft materials. Furthermore, the stability of deformable objects simulation is ensured by an implicit temporal integration scheme. Our method allows to model these tissues without prior assumption on the dimension of their of their geometry (curve, surface or volume), and enables mechanical coupling between organs. To obtain an interactive frame rate, we develop a parallel version suitable for to GPU computation. Finally we demonstrate the proper convergence of our finite element scheme

    Physically-based 6-DoF Nodes Deformable Models: Application to Connective Tissues Simulation and Soft-Robots Control

    Get PDF
    The medical simulation is an increasingly active research field. Yet, despite the promising advance observed over the past years, the complete virtual patient’s model is yet to come. There are still many avenues for improvements, especially concerning the mechanical modeling of boundary conditions on anatomical structures.So far, most of the work has been dedicated to organs simulation, which are generally simulated alone. This raises a real problem as the role of the surrounding organs in the boundary conditions is neglected. However, these interactions can be complex, involving contacts but also mechanical links provided by layers of soft tissues. The latter are known as connective tissues or fasciae. As a consequence, the mutual influences between the anatomical structures are generally simplified, weakening the realism of the simulations.This thesis aims at studying the importance of the connective tissues, and especially of a proper modeling of the boundary conditions. To this end, the role of the ligaments during laparoscopic liver surgery has been investigated. In order to enhance the simulations’ realism, a mechanical model dedicated to the connective tissues has been worked out. This has led to the development of a physically-based method relying on material points that can, not only translate, but also rotate themselves. The goal of this model is to enable the simulation of multiple organs linked by complex interactions.In addition, the work on the connective tissues model has been derived to be used in soft robotics. Indeed, the principle of relying on orientable material points has been used to developed a reduced model that can reproduce the behavior of more complex structures. The objective of this work is to provide the means to control – in real-time – a soft robot made of a deformable arm.La simulation médicale est un domaine de recherche de plus en plus actif. Cependant, malgré les avancées prometteuses observées ces dernières années, le modèle complet du patient virtuel reste un objectif ambitieux. Il existe encore de nombreuses opportunités de recherche, notamment concernant la modélisation mécanique des conditions aux limites des organes.Jusqu'à présent, la majorité des travaux était consacrée à la simulation d'organes, ces derniers étant généralement simulés seuls. Cette situation pose un réel problème car l'influence qu'ont les organes environnants sur les conditions aux limites est négligée. Ces interactions peuvent être complexes, impliquant des contacts mais aussi des liaisons mécaniques dues à des couches de tissus connus sous le nom de tissus conjonctifs ou fasciae. Pour cette raison, les influences mutuelles entre les structures anatomiques sont généralement simplifiées, diminuant le réalisme des simulations.Cette thèse visé à étudier l'importance des tissus conjonctifs, et plus particulièrement d'une bonne modélisation des conditions aux limites. Dans ce but, le rôle des ligaments lors d'une intervention chirurgicale sur la foie par laparoscopie a été étudié. Afin d'améliorer le réalisme des simulations, un modèle mécanique dédié aux tissus conjonctifs a été mis au point. Ainsi, une méthode basée sur la mécanique des milieux continus et un ensemble de nœuds à 6 degrés de liberté a été développée. L'objectif de ce modèle étant de permettre la simulation simultanée de plusieurs organes liés par des interaction complexes.En outre, les travaux sur les tissus conjonctifs ont donné lieu à la mise au point d'une méthode de modélisation utilisée dans le cadre des robots déformables. Cette méthode permet un contrôle précis, et temps-réel, d'un bras robotisé déformable. En effet, l'utilisation de nœuds orientables a permis de développer un modèle a nombre de degrés de liberté réduit, qui permet de reproduire le comportement de structures plus complexes

    Tumor-Induced Osteomalacia : A Systematic Clinical Review of 895 Cases

    Get PDF
    Tumor-induced osteomalacia (TIO) is a rare and largely underdiagnosed paraneoplastic condition. Previous reviews often reported incomplete data on clinical aspects, diagnosis or prognosis. The aim of this study was to present a systematic clinical review of all published cases of TIO. A search was conducted in Pubmed, Embase, Web of Science from inception until April 23rd, 2020. We selected case reports and case series of patients diagnosed with TIO, with information on tumor localization and serum phosphate concentration. Two reviewers independently extracted data on biochemical and clinical characteristics including bone involvement, tumor localization and treatment. 468 articles with 895 unique TIO cases were included. Median age was 46 years (range 9 months–90 years) and 58.3% were males. Hypophosphatemia and inappropriately low or normal 1,25-dihydroxyvitamin D levels, characteristic for TIO, were present in 98% of cases. Median tumor size was 2.7 cm (range 0.5 to 25.0 cm). Serum fibroblast growth factor 23 was related to tumor size (r = 0.344, P < 0.001). In 32% of the cases the tumor was detected by physical examination. Data on bone phenotype confirmed skeletal involvement: 62% of cases with BMD data had a T-score of the lumbar spine ≤ − 2.5 (n = 61/99) and a fracture was reported in at least 39% of all cases (n = 346/895). Diagnostic delay was longer than 2 years in more than 80% of cases. 10% were reported to be malignant at histology. In conclusion, TIO is a debilitating disease characterized by a long diagnostic delay leading to metabolic disturbances and skeletal impairment. Increasing awareness of TIO should decrease its diagnostic delay and the clinical consequences

    Search for dark matter produced in association with bottom or top quarks in √s = 13 TeV pp collisions with the ATLAS detector

    Get PDF
    A search for weakly interacting massive particle dark matter produced in association with bottom or top quarks is presented. Final states containing third-generation quarks and miss- ing transverse momentum are considered. The analysis uses 36.1 fb−1 of proton–proton collision data recorded by the ATLAS experiment at √s = 13 TeV in 2015 and 2016. No significant excess of events above the estimated backgrounds is observed. The results are in- terpreted in the framework of simplified models of spin-0 dark-matter mediators. For colour- neutral spin-0 mediators produced in association with top quarks and decaying into a pair of dark-matter particles, mediator masses below 50 GeV are excluded assuming a dark-matter candidate mass of 1 GeV and unitary couplings. For scalar and pseudoscalar mediators produced in association with bottom quarks, the search sets limits on the production cross- section of 300 times the predicted rate for mediators with masses between 10 and 50 GeV and assuming a dark-matter mass of 1 GeV and unitary coupling. Constraints on colour- charged scalar simplified models are also presented. Assuming a dark-matter particle mass of 35 GeV, mediator particles with mass below 1.1 TeV are excluded for couplings yielding a dark-matter relic density consistent with measurements

    Search for single production of vector-like quarks decaying into Wb in pp collisions at s=8\sqrt{s} = 8 TeV with the ATLAS detector

    Get PDF

    Measurements of top-quark pair differential cross-sections in the eμe\mu channel in pppp collisions at s=13\sqrt{s} = 13 TeV using the ATLAS detector

    Get PDF

    Measurement of the W boson polarisation in ttˉt\bar{t} events from pp collisions at s\sqrt{s} = 8 TeV in the lepton + jets channel with ATLAS

    Get PDF

    Measurement of the charge asymmetry in top-quark pair production in the lepton-plus-jets final state in pp collision data at s=8TeV\sqrt{s}=8\,\mathrm TeV{} with the ATLAS detector

    Get PDF

    Charged-particle distributions at low transverse momentum in s=13\sqrt{s} = 13 TeV pppp interactions measured with the ATLAS detector at the LHC

    Get PDF

    Measurement of the bbb\overline{b} dijet cross section in pp collisions at s=7\sqrt{s} = 7 TeV with the ATLAS detector

    Get PDF
    corecore